New Data Presented at the 2023 ATA Annual Meeting Demonstrate that Veracyte’s Afirma-Based Testing Can Uncover Key Molecular Hallmarks of Thyroid Cancer

Company also introduces research-use-only Afirma Genomic Resource for Intelligent Discovery (GRID) platform for additional insights into thyroid nodules and cancer

Veracyte, Inc. (Nasdaq: VCYT) today announced that new data presented at the 2023 American Thyroid Association (ATA) Annual Meeting demonstrate the type of novel molecular insights for thyroid nodules and cancer that are enabled by analysis with the Afirma Genomic Sequencing Classifier (GSC). Presented by clinical researchers in three posters, the findings are based on Afirma whole-transcriptome RNA sequencing data and reveal novel molecular profiles to advance research of thyroid nodules and cancer. These data represent findings that can be assessed utilizing the company’s Afirma Genomic Resource for Intelligent Discovery (GRID) tool, which will soon be available, upon request, on a research-use-only basis.

“These ATA presentations underscore the value of personalized, whole-transcriptome-based data for a clearer understanding of the molecular underpinnings of thyroid nodules and cancer, which may ultimately be useful for more tailored treatment of patients,” said Joshua Klopper, M.D., Veracyte’s medical director for Endocrinology. “Now with the Afirma GRID, we are pleased to give researchers a new tool to help fuel novel discoveries in the science of thyroid nodules and cancer.”

The three ATA posters include results from the analysis of whole-transcriptome data derived from the Afirma GSC. Highlights from the posters include:

  • Leveraging RNA Sequencing for Pre-Operative Immunophenotyping of BRAFV600E+ Thyroid Nodules

    Jarod Olay, M.S., from the UCLA David Geffen School of Medicine and collaborators found that RNA expression profiles derived by Afirma GSC molecular testing may allow for pre-operative immunophenotyping of thyroid cancers instead of the traditional immunohistochemistry performed on surgical specimens. Their study was based on a retrospective analysis of nearly 48,000 thyroid nodules analyzed with the Afirma GSC, confirming that the classifier identified the expected immunophenotype for a specific type of thyroid cancer molecular alteration. While additional research is needed, these findings begin to suggest the potential future use of Afirma GSC testing to predict a thyroid cancer’s response to immune checkpoint inhibitor therapy.
  • Molecular Assessment of Isthmus Thyroid Carcinomas

    Sina Jasim, M.D., from Washington University in St. Louis and collaborators detected molecular differences between thyroid cancers in the isthmus compared to lobar locations, which could help explain why thyroid nodules in the isthmus are more likely to be malignant and demonstrate aggressive behavior. Analysis with Afirma GSC revealed that isthmus-based cancers had increased BRAF-like molecular signatures, ERK, and FMT (follicular mesenchymal transition) signaling compared to lobar-based cancers.
  • Sodium Iodide Symporter (NIS) Expression in Cytologically Indeterminate and Malignant Thyroid Nodules

    Prasana Santhanam, M.B.B.S., M.D., from the Johns Hopkins University School of Medicine and collaborators found that NIS expression varies widely across thyroid nodule cytological classification groups and across molecular alterations. They analyzed Afirma GSC gene expression data from more than 47,000 thyroid nodules and recommend follow-up studies to determine how pre-operative assessment of NIS expression could be used to improve treatment selection for patients.

“Understanding the broad range of molecular profiles associated with thyroid cancer will require sophisticated analysis tools and studies to determine how these profiles can potentially be used to stratify patients and identify the best course of treatment,” said Dr. Santhanam. “Our team was pleased to collaborate with the Afirma team for whole-transcriptome analysis of thyroid FNA samples and to gain new insights into the spectrum of NIS expression.”

New Research-Use-Only Afirma GRID

The three molecular signatures identified in these studies, along with many other thyroid cancer molecular profiles, will soon be available through the new Afirma GRID research-use-only tool. The database was developed through novel discovery work at Veracyte and through the utilization of published literature. It is designed to serve as a comprehensive resource for research into molecular characteristics that may ultimately help improve the understanding of how to manage patients with thyroid nodules. The tool is available upon request and is intended for use on a research-use-only basis for thyroid nodules that are deemed suspicious for cancer by the Afirma GSC or are reported as Bethesda V or VI by cytopathology.

“We are excited to soon make this new tool available to the thyroid cancer research community,” said Dr. Klopper. “Similar to what Veracyte has done for prostate cancer research with our Decipher GRID tool, with Afirma GRID we aim to help usher in a new era of more personalized diagnosis and treatment for patients with thyroid nodules and cancer.”

About Veracyte

Veracyte (Nasdaq: VCYT) is a global diagnostics company whose vision is to transform cancer care for patients all over the world. We empower clinicians with the high-value insights they need to guide and assure patients at pivotal moments in the race to diagnose and treat cancer. Our high-performing tests enable clinicians to make more confident diagnostic, prognostic, and treatment decisions for some of the most challenging diseases such as thyroid, prostate, breast, bladder and lung cancers, as well as interstitial lung diseases. We help patients avoid unnecessary procedures and speed time to diagnosis and appropriate treatment. In addition to making our tests available in the U.S. through our central laboratories, we also aim to deliver our tests to patients worldwide through a distributed model to laboratories that can perform them locally. For more information, please visit www.veracyte.com and follow the company on Twitter (@veracyte).

Cautionary Note Regarding Forward-Looking Statements

This press release contains forward-looking statements, including, but not limited to our statements related to our plans, objectives, expectations (financial and otherwise) or intentions with respect to our clinical tests in and outside of the United States. Forward-looking statements can be identified by words such as: “appears,” "anticipate," "intend," "plan," "expect," "believe," "should," "may," "will," “positioned,” “designed” and similar references to future periods. Examples of forward-looking statements include, among others, that the Afirma GRID can help enable clearer understanding of the molecular underpinnings of thyroid nodules and cancer, which may ultimately be useful for more tailored treatment of patients with cancer; the Afirma GRID can help researchers fuel novel discoveries in the science of thyroid nodules and cancer; Afirma GSC testing may have potential in the future to predict a thyroid cancer’s response to immune checkpoint inhibitor therapy. Additional factors that may impact these forward-looking statements can be found under the caption “Risk Factors” in our Annual Report on Form 10-K filed on March 1, 2023, and our Quarterly Report on Form 10-Q filed for the three months ended June 30, 2023. Copies of these documents, when available, may be found in the Investors section of our website at https://investor.veracyte.com. These forward-looking statements speak only as of the date hereof and, except as required by law, we specifically disclaim any obligation to update these forward-looking statements or reasons why actual results might differ, whether as a result of new information, future events or otherwise.

Veracyte, the Veracyte logo and Afirma are registered trademarks of Veracyte, Inc. and its subsidiaries in the U.S. and selected countries.

Veracyte delivers the Afirma Genomic Sequencing Classifier and TERT DNA analysis from its CLIA laboratory. These tests are not CE-IVD marked and have not been cleared or approved by the FDA; their performance characteristics were determined by Veracyte and they might be considered for Research Use Only in some markets. Please contact Veracyte for confirmation.

Contacts

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.